
Semi-Deciding QF NIA with AProVE via
Bit-Blasting ?

Jürgen Giesl1, Cornelius Aschermann2, Marc Brockschmidt3, Fabian Emmes1,
Florian Frohn1, Carsten Fuhs4, Jera Hensel1, Carsten Otto, Martin Plücker1,

Peter Schneider-Kamp5, Thomas Ströder1, Stephanie Swiderski, and René
Thiemann6

1 RWTH Aachen University, Germany
2 Ruhr-Universität Bochum, Germany
3 Microsoft Research, United Kingdom

4 Birkbeck, University of London, United Kingdom
5 University of Southern Denmark, Denmark

6 University of Innsbruck, Austria

In automated termination provers like our tool AProVE [4], often the need arises
to solve Boolean combinations of constraints in non-linear (integer) arithmetic
to perform a proof step for a successful termination proof. Examples for promi-
nent termination proof techniques where this is the case are well-founded orders
based on polynomial [3] or matrix interpretations [2]. In order to facilitate this
task, AProVE features a dedicated SMT solver for the SMT-LIB logic QF NIA.
AProVE is written in Java.

The approach we are using at SMT-COMP for the QF NIA category is based
on a reduction to satisfiability problems on finite domains for the unknowns. In
case a satisfying assignment is found by the finite domain solver, we return the
corresponding integer solution. If the finite domain solver detects unsatisfiability
of the generated instance for the current search space, we know that there is no
solution for the QF NIA instance with the used finite domain, and we restart the
search with an extended domain. In this way, we obtain a semi-decision procedure
for the satisfiability problem of QF NIA. We additionally use information from
global constraints (i.e., atomic top-level assertions like x > 42) of the QF NIA
instance to bound the search space for certain unknowns.

To solve the generated instances of finite-domain satisfiability problems,
AProVE uses an encoding to the satisfiability problem of propositional logic
(SAT). We first generate a propositional formula DAG (which shares common
subexpressions; this approach is also known as structural hashing) and then
convert this DAG into an equisatisfiable conjunctive normal form (CNF) using
the implementation of Tseitin’s transformation in SAT4J [5]. This CNF is then
checked for satisfiability by the SAT solver MiniSAT [1]. This kind of approach
is commonly known as bit-blasting.

Our SAT encoding is described in detail in [3]. At a high level, it works as
follows. The Boolean structure of the original constraint is represented as such. It
thus remains to encode atomic constraints from QF NIA. To this end, we assign
a bitvector of Boolean variables to each of the unknowns. These bitvectors are

? System description for SMT-COMP 2016.



large enough for a binary representation of all values of the chosen finite domain.
We then encode the corresponding arithmetic operations in such a way that the
bitvector for the result is again large enough to store the result of the operation.
For example, if the unknowns x and y are represented in m bits, the encoding
of x + y will use m + 1 bits.

This is in contrast to the logic QF BV, where the length m of the bitvector
for the result of an arithmetic operation like addition or multiplication is the
same as for its inputs, such that computations expressed in QF BV are modulo
2m (see also http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV).

We also keep track of the maximum value that an expression can take based
on the search space of its components, which allows us to drop most significant
bits if we detect that they will necessarily be equivalent to 0. As an example,
consider a product x·y ·z, where we search for solutions for x, y, z over {0, 1, 2, 3}.
Thus, each of x, y, z is represented by a bitvector of 2 bits. Here the SAT encoding
for multiplication would yield a bitvector of 2 + 2 + 2 = 6 bits. However, the
maximum possible value for the expression is 3 · 3 · 3 = 27, which uses only 5
bits in binary representation. Thus, we can drop the most significant bit from
the bitvector for the product x · y · z since it will always be equivalent to 0.

For the structural hashing, equality of arguments for ∨ and ∧ is considered
modulo associativity, commutativity, and multiplicity,, i.e., we represent both
(x ∨ y) ∨ x and y ∨ (y ∨ x) by x ∨ y. Similarly, for the exclusive-or ⊕ we use
idempotency, i.e., x ⊕ x is equivalent to 0. Finally, we use partial evaluation of
formulas involving Boolean constants during construction (e.g., when we create
a disjunction of 0 and a formula p, we obtain p instead of 0 ∨ p).

Acknowledgments. We thank Karsten Behrmann, Andrej Dyck, and Patrick
Kabasci for their contributions to the SMT-solving front-end of AProVE.

References

1. N. Eén and N. Sörensson. An extensible SAT-solver. In Proc. SAT 2003, volume
2919 of LNCS, pages 502–518, 2004. See also http://minisat.se.

2. J. Endrullis, J. Waldmann, and H. Zantema. Matrix interpretations for proving
termination of term rewriting. Journal of Automated Reasoning, 40(2-3):195–220,
2008.

3. C. Fuhs, J. Giesl, A. Middeldorp, R. Thiemann, P. Schneider-Kamp, and H. Zankl.
SAT solving for termination analysis with polynomial interpretations. In Proc. SAT
2007, volume 4501 of LNCS, pages 340–354, 2007.

4. J. Giesl, M. Brockschmidt, F. Emmes, F. Frohn, C. Fuhs, C. Otto, M. Plücker,
P. Schneider-Kamp, T. Ströder, S. Swiderski, and R. Thiemann. Proving termina-
tion of programs automatically with AProVE. In Proc. IJCAR 2014, volume 8562 of
LNAI, pages 184–191, 2014. See also http://aprove.informatik.rwth-aachen.de.

5. D. Le Berre and A. Parrain. The SAT4J library, release 2.2. Journal on Satisfiability,
Boolean Modeling and Computation, 7:59–64, 2010. See also http://www.sat4j.org.

2

http://smtlib.cs.uiowa.edu/logics-all.shtml#QF_BV
http://minisat.se
http://aprove.informatik.rwth-aachen.de
http://www.sat4j.org

	Semi-Deciding QF_NIA with AProVE via Bit-Blasting 

