raSAT 0.2 for SMT-COMP 2015

Vu Xuan Tung1, To Van Khanh2, and Mizuhito Ogawa1

1 Japan Advanced Institute of Science and Technology\{tungvx,mizuhito\}@jaist.ac.jp
2 University of Engineering and Technology, Vietnam National University, Hanoi khanhtv@vnu.edu.vn

raSAT is an SMT solver for polynomial constraints. It consists of a simple iterative approximation refinement, called raSAT loop \cite{2}, which is an extension of the standard ICP (Interval Constraint Propagation) with Testing. Two approximation schemes consist of Interval Arithmetic (IA) and Testing, to accelerate SAT detection. If both fails, input intervals are refined by decomposition.

raSAT loop is extended with the use of the Intermediate Value Theorem to show the satisfiability of equations.

To avoid soundless bugs due to round-off error of floating arithmetic operations, raSAT applies outward rounding in Interval Arithmetic and implements SAT confirmation step by an error-bound guaranteed floating point package iRRAM\cite{3}.

raSAT takes advantages from the following packages/libraries.

\begin{itemize}
 \item miniSAT\cite{4} as the back-end SAT solver.
 \item iRRAM for confirmation of SAT instances.
 \item The library in \cite{1} for round-down/up in each Interval Arithmetics.
 \item The OCaml parser for SMT-LIB 2.0 scripts from \url{http://smtlib.cs.uiowa.edu/utilities.shtml}
\end{itemize}

Package Distribution:

Source code and a precompiled version of raSAT can be downloaded from \url{http://www.jaist.ac.jp/~s1310007/raSAT/}

References

\cite{1} Alliot, J.M., Gotteland, J.B., Vanaret, C., Durand, N., Gianazza, D.: Implementing an interval computation library for OCaml on x86/amd64 architectures. In: ICFP. ACM (2012)

\footnote{http://irram.uni-trier.de}
\footnote{http://minisat.se/}