
Satisfiability Modulo Theories Competition
(SMT-COMP) 2012: Rules and Procedures

Roberto Bruttomesso
Dept. of Computer Science

University of Milan, Milan (Italy)

David R. Cok
GrammaTech, Inc.
Ithaca, NY (USA)

Alberto Griggio
ES Division

FBK, Trento (Italy)

This version revised 2012-6-2

Comments on this document should be emailed to the smtcomp mailing list or, if necessary, directly
to the organizers.

1 Introduction
The annual Satisfiability Modulo Theories Competition (SMT-COMP) is held to spur advances in
SMT solver implementations on benchmark formulas of practical interest. Public competitions are
a well-known means of stimulating advancement in software tools. For example, in automated
reasoning, the CASC and SAT competitions for first-order and propositional reasoning tools, re-
spectively, have spurred significant innovation in their fields [7, 5]. More information on the history
and motivation for SMT-COMP can be found at the SMT-COMP web site, www.smtcomp.org,
and in reports on previous competitions ([3, 4, 2, 1]). SMT-COMP 2012 is affiliated with the
SMT workshop (http://smt2012.loria.fr/) at the 6th International Joint Conference on
Automated Reasoning (IJCAR) (http://ijcar.cs.manchester.ac.uk/).

Accordingly, researchers are highly encouraged to submit both new benchmarks and new or
improved solvers to raise the level of competition and advance the state-of-the-art in automated
SMT problem solving.

Note that SMTCOMP 2012 has several tracks: a main track, a parallel track, an application
track, an unsat-core track, and a proof-generation track. Within a track there are one or more divi-
sions, where each division uses benchmarks from a specific SMT-LIB logic (or group of logics).

The rest of this document, updated from the last year’s version1, describes the rules and com-
petition procedures for SMT-COMP 2012. The principal changes from last year’s version are the
following:

1Earlier versions of this document include contributions from Clark Barrett, Albert Oliveras, Aaron Stump, and
Morgan Deters.

1



• In the main and parallel competition, we are concentrating on just a few of the benchmark
divisions this year. Some divisions, such as QF LIA, are subsumed into more expressive
logics (QF UFLIA for QF LIA); others have received only light interest in past competi-
tions. Our goal is to focus the competition on divisions of particular interest to applications.
Solvers requesting to be run against other benchmark divisions are welcome and will be run
in exhibition mode: results will be displayed and publicly reported.

• We are retaining and accenting last year’s “application track” and encourage submission of
benchmarks for this track and competition against these benchmarks.

• The penalty for producing an incorrect result is increased. Competitors producing all cor-
rect results are ranked above those producing incorrect results (a “soft” disqualification for
unsound tools).

• We are adding an “unsat core” track.

• We will have an exhibition track of solvers that produce proofs.

• The competition will be run with the SMT-Exec service used last year. The organizers had
expected to use a new StarExec service, replacing the previous SMT-Exec service. However,
at this writing the new service is not yet available.

Additionally, non-competitive divisions will not be exhibited as part of the competition: at least
two competitors must be entered into a division for it to run as part of the competition. If necessary,
and based on final submissions, the organizers may elect to combine competition divisions to make
them competitive (such decisions will be made with input from the community).

As in SMT-COMP 2011, the 2012 version will incorporate a small number of random “fuzzer-
generated” instances (see below) to help promote attention to solver correctness.

It is important for competitors to track discussions on the SMT-COMP mailing list, as clarifi-
cations and any updates to these rules will be posted there.

2 Entrants

Solver format. An entrant to SMT-COMP is an SMT solver submitted using the SMT-Exec2

service. The execution service enables members of the SMT research community to run solvers
on jobs consisting of benchmarks from the SMT-LIB benchmark library. Jobs are run on a shared
computer cluster. The execution service is provided free of charge, but it does require a minimal
registration, which verifies an email address and prevents misuse of the service. Registered users
may then upload their own solvers to run, or may run public solvers already uploaded to the service.
The service provides a variety of tabular and graphical displays of results of solver executions, for
comparison. For the main (sequential-solver) and application tracks of SMT-COMP 2012, the
service will be configured so that jobs are run on a 64-bit, uniprocessor Linux kernel. For the
parallel-solver track, StarExec will be configured so that jobs are run on a 64-bit, multiprocessor
Linux kernel.

2The organizers may switch to StarExec, though Star-Exec is still under development as of 12 May 2012.

2



For participation in SMT-COMP, a solver must be uploaded as a “competition” solver via the
service’s upload mechanism, or, alternatively, a previously-uploaded solver may be marked as a
“competition” solver. In either case, uploads must be marked for competition before the deadline;
uploading a solver to the service is not sufficient for competition entry if it is not marked as being a
competition entrant. The md5 checksums of competition submissions will be public immediately
after the deadline for competition entry has passed to ensure transparency, and the submissions
themselves will be made public after the competition. Source code need not be provided. However,
in order to encourage sharing of source code, extra recognition will be given to solvers providing
source code distributions including recognition for the top such solver in each division. Instructions
for uploading solvers and machine specifications will be posted as soon as they are available.

System description. As part of their submission, SMT-COMP entrants must also include a short
(1–2 pages) description of the system. This should include a list of all authors of the system
and their present institutional affiliations. The programming language(s) and basic SMT solving
approach employed should be described (e.g., lazy integration of a Nelson-Oppen combination
with SAT, translation to SAT, etc.). System descriptions are encouraged to include a URL for a
web site for the submitted tool, but this is optional. System descriptions must also include a 32-bit
unsigned integer. These numbers, collected from all submissions, are used to seed the pseudo-
random benchmark selection algorithm, as well as the benchmark scrambler.

The upload system will ask for the system description and the random seed when a solver is
marked for competition, so their inclusion in the uploaded archive itself is optional.

Other systems. As in previous years, due to limitations on computational resources, the organizers
reserve the right not to accept multiple versions of the same solver (defined as sharing 50% or more
of its source code). The organizers reserve the right to submit their own systems, or other systems
of interest, to the competition.

Wrapper tools. A wrapper tool is defined as any tool which calls an SMT solver not written by
the author of the wrapper tool. The other solver is called the wrapped tool. There are several
rules governing wrapper tools that wrap tools that have been or could be submitted as independent
entrants.3 For the purposes of these rules, multiple versions of a wrapped tool are considered
different tools. The goal of these rules is to require wrapper tools to outperform the tools they wrap
(since otherwise, there is no apparent quantitative way to argue that the wrapper tool improves upon
the wrapped tool).

• The name of the wrapper tool must end with “+name”, where name is the name of the
wrapped tool (e.g. “Flash+CVC3” for a tool wrapping CVC3).

• If the wrapped tool is from last year’s SMT-COMP or earlier, then for each division entered
by the wrapper tool, if the wrapper tool does not place ahead, according to the scoring rules
below, of last year’s winner in that division, it will be disqualified from that division (but not
necessarily from the whole competition).

• If the wrapped tool was released after last year’s SMT-COMP, then the wrapper tool can be
entered only if

3A wrapper for a wrapped tool that does not accept SMT-LIBv2 format is considered to simply be an SMT version
of the underlying tool.

3



– Permission has been given by the author of the wrapped tool

– The wrapped tool is submitted and entered in every division in which the wrapper tool
is entered.

For each division entered by the wrapper tool, if the wrapper tool does not place ahead of
the wrapped tool in that division, it will be disqualified from that division.

Attendance. As with previous SMT-COMPs, submitters of an SMT-COMP entrant need not be
physically present at the competition to participate or win.

Deadlines
Main competition track. SMT-COMP entries must be submitted via SMTExec by 7pm, Eastern
U.S. time, June 15, 2012. At that time the service will be closed to the public to prepare for the
competition, with the exception that resubmissions of existing entries will be accepted until 7pm,
Eastern U.S. time, June 18, 2012. We strongly encourage participants to use this weekend grace
period only for the purpose of fixing any bugs that may be discovered and not for adding new
features as there will be no opportunity to do extensive testing using StarExec after the original
deadline on June 15.

The versions that are present on the execution service at the conclusion of the grace period will
be the ones used for the competition, and versions submitted after this time will not be used. The
organizers reserve the right to start the competition itself at any time after the open of the New
York Stock Exchange on the morning of June 20. See Section 6 below for a full timeline.

Application track. The same deadlines and procedure for submitting to the main track will be
used also for the application track. Submissions to both the application track and the main compe-
tition are independent: participants must submit explicitly to both events to participate in both, and
they may submit different (or differently configured) solvers to each. Benchmarks will be scram-
bled also for this division, using the same scrambler and seed as the main track. Entrants should
still include a system description, as for the regular competition.

Parallel solver track. Solvers employing concurrency are invited to participate in a demonstra-
tion that will be run in conjunction with the regular competition. Parallel solvers must be submitted
by the same June 15th deadline, with the same grace period for resubmission as in the regular com-
petition. Submissions to both the parallel solver track and the main competition are independent:
participants must submit explicitly to both events to participate in both, and they may submit dif-
ferent (or differently configured) solvers to each. Benchmarks may or may not be scrambled for
this division. Entrants should still include a system description, as for the regular competition.

Note that the SMT-COMP organizers may include other (“historical” or otherwise relevant) solvers
in all the competition tracks for demonstration and comparison. The organizers reserve the right to
include or exclude such solvers, and to make simple modifications to historical sequential solvers
to (naı̈vely) take advantage of multiple processors or to connect them with a parser for the SMT-
LIB version 2.0 format (e.g. by implementing a wrapper tool).

4



3 Execution of Solvers
Solvers will be publicly evaluated in the following tracks, listed here and described in detail below.
In exhibition divisions of these tracks, solvers are evaluated and results posted, but no awards are
announced. The other divisions are competition divisions; if there are sufficient entrants, a winner
will be announced.

• a main track: sequential execution evaluated separately on benchmarks from each of several
different logics (some competitive and some exhibition divisions)

• a parallel track: parallel execution evaluated on the same benchmarks and the same divisions
as the main track (some competitive and some exhibition divisions)

• application track: evaluation on command scripts (all divisions with sufficient benchmarks
and entrants are competitive)

• unsat-core track: a competition among solvers capable of computing unsat cores

• proof-generation exhibition: an exhibition track for solvers capable of generating proofs (this
track is tentative, given that the organizers must work with the SMT-Exec service)

3.1 Logistics

Dates of competition. We anticipate that the bulk of the main track of the competition will take
place during the course of IJCAR 2012, from June 26 to the 29th. Results will be announced in
a special session of IJCAR, on the last day of the conference, as well as at the SMT workshop
and on the SMT-COMP web site. Intermediate results will be regularly posted to the SMT-COMP
website as the competition runs.

If there are enough competitors to run the parallel track, we intend to run it before or after the
main competition (depending on the estimated duration of the track). We may choose to use an
NYSE seed from a different date to accommodate an early start.

The organizers will prioritize the running of the competition tracks, and may shift the time
period or order of the competition or exhibition tracks in order to complete SMT-COMP in the
course of the IJCAR conference.

Input and Output. Participating solvers must read a single benchmark script (defined below, not
part of the 2.0 standard), presented on its standard input channel. The script is in the concrete
syntax of the SMT-LIB format, version 2.0. A benchmark script is essentially just the translation
of a benchmark from the version 1.2 specification. In more detail, a benchmark script is just a
script where:

1. The (single) set-logic command setting the benchmark’s logic is the first command after any
set-option commands described below.

2. The exit command is the last command.

3. For tracks other than the application track, there is exactly one check-sat command, follow-
ing possibly several assert commands.

5



4. For the application track, there are one or more check-sat commands, each preceded by one
or more assert commands and zero or more push 1 commands, and followed by zero or
more pop 1 commands.

5. Scripts for the application track will have an initial set-option :print-success true com-
mand.

6. There is at most one set-info command for status.

7. The formulas in the script belong to the benchmark’s logic, with any free symbols declared
in the script.

8. Extra symbols are declared exactly once before any use, using declare-sort or declare-fun.
They must be part of the allowed signature expansion for the logic. Moreover, all sorts
declared with a declare-sort command must have zero arity.

9. In the unsat-core competition, the set-logic command is preceded by a
set-option :produce-unsat-cores true command and the check-sat command is followed
by a get-unsat-core command. Also, some or all of the assert commands will assert named
formula (for example, assert (! P :named F1)). The get-unsat-core command must return
a parenthesized list of formula names, as specified by the SMTLIBv2 standard.

10. In the proof generation competition, the set-logic command is preceded by a
set-option :produce-proofs true command and the check-sat command is followed by a
get-proof command. The get-proof command must return a proof in a solver-dependent
format made known to the organizers.

11. No other commands besides the ones just mentioned may be used.

The SMT-LIB format specification is publicly available from the “Documents” section of the SMT-
LIB website [8]. Solvers will be given formulas just from the Problem Divisions indicated during
their submission to SMT-Exec. Example benchmark scripts for several Problem Divisions are
reported in the Appendix. Note that they are provided for illustrative purposes only: please refer
to the SMT-LIB format specification and the above definition of benchmark script for the official
specification of the input format for SMT-COMP.

3.2 Main track and parallel track
The main track competition will consist of selected benchmarks in each of the logic divisions given
below. Each benchmark script will be presented to the standard input of the solver. Each SMT-
COMP entrant is then expected to attempt to report on its standard output channel whether the for-
mula is satisfiable (“sat”, in lowercase, without the quotation marks) or unsatisfiable (“unsat”).
An entrant may also report “unknown” to indicate that it cannot determine satisfiability of the
formula. For more detailed information on the output format, see the description on the StarExec
“Upload a Solver” page.

Solvers that register in non-competition logic divisions (cf. section 4) will be run in an exhibi-
tion mode: results will be generated and publicly posted, but no awards will be announced.

6



Timeouts. Each SMT-COMP solver will be executed on an unloaded competition machine for
each given formula, up to a fixed time limit. The time limit is yet to be determined, but it is
anticipated to be 20 minutes, as it was in 2011.4 Solvers that take more than this time limit will
be killed. Solvers are allowed to spawn other processes. These will be killed at approximately the
same time as the first started process, using the TreeLimitedRun script, developed for the CASC
competition and available on the SMT-COMP web page. A timeout scores the same as if the output
is “unknown”.

Aborts and unparsable output. Solvers which exit before the time limit without reporting a
result (i.e. due to exhausting memory, crashing, or producing output other than sat, unsat,
or unknown) will be considered to have aborted. An abort scores the same as if the output is
“unknown”. Also, as a further measure to prevent misjudgments of solvers, any “success”
outputs will be ignored.5

Persistent state. Solvers are allowed to create and write to files and directories during the course
of an execution, but they are not allowed to read such files back during later executions. Any files
written should be put in the directory in which the tool is started, or in a subdirectory.

3.3 Application track
The application track evaluates SMT solvers when interacting with an external verification frame-
work, e.g., a model checker. This interaction, ideally, happens by means of an online communi-
cation between the model checker and the solver: the model checker repeatedly sends queries to
the SMT solver, which in turn answers either sat or unsat. In this interaction an SMT-solver is
required to accept queries incrementally via its standard input channel.

In order to facilitate the evaluation of the solvers in this track, we will set up a “simulation” of
the aforementioned interaction, as was done in 2011. In particular each benchmark in the appli-
cation track represents a realistic communication trace, containing multiple check-sat commands
(possibly with corresponding push 1/pop 1 commands), which is parsed by a trace executor. The
trace executor serves the following purposes:

• it simulates the online interaction by sending single queries to the SMT solver (through
stdin);

• it prevents “look-ahead” behaviours of SMT solvers;

• it records time and answers for each call, possibly aborting the execution in case of a wrong
answer;

• it guarantees a fair execution for all solvers by abstracting from any possible crash, misbe-
haviour, etc. that may happen on the model checker side.

4The time limit may be adjusted once we understand the resources and capabilities of the StarExec service.
5Note that SMT-LIBv2 requires to produce a “success” answer after each set-logic, declare-sort, declare-fun

and assert command (among others), unless the option :print-success is set to false; ignoring the success outputs
therefore allows for submitting fully-compliant solvers without the need of a wrapper script, while still allowing
entrants of previous competitions to run without changes.

7



Input and Output. Participating solvers will be connected to a trace executor which will incre-
mentally send commands to the standard input channel of the solver and read responses from the
standard output channel of the solver. The commands will be taken from an incremental bench-
mark script, which is an SMT-LIB 2.0 script which satisfies the rules for an application script
given above. Note also that the trace executor will send a single set-option :print-success true
command to the solver before sending commands from the incremental benchmark script.

Solvers must respond immediately to the commands sent by the trace executor, with the an-
swers defined in the SMT-LIB 2.0 format specification, that is, with a success answer for set-
option, set-logic, declare-sort, declare-fun, assert, push 1, and pop 1 commands, with a sat,
unsat, or unknown for check-sat commands, and with the defined responses for get-unsat-core
and get-proof commands.

Timeouts. A time limit is set for the whole execution of each application benchmark (consisting
of multiple queries). We anticipate the timeout to be around 30 minutes (as it was in 2011).6

3.4 Unsat-core and proof-generation tracks
Applications such as software verification and model checking are enhanced by having proofs and
unsatisfiable cores available from SMT solvers. Accordingly we are encouraging solvers to add
such capabilities by recognizing them in SMTCOMP 2012.

The unsat-core track will evaluate solvers’ capability to generate unsatisfiable cores for prob-
lems that are known to be unsatisfiable. Solvers will be measured by the smallness of the unsat
core they return. The SMT-LIBv2 language accommodates this functionality by providing two
features: the ability to name top-level (asserted) formula and the ability to request an unsat-core
after a check-sat command returns unsat. The unsat-core that is returned consists of a list of
names of formula. In the competition we will check that the returned unsat-core is well-defined
and is still unsatisfiable.

Similarly, the competition will feature an exhibition track of proof-generating solvers. This
is simply an exhibition track because there is as yet no SMT-LIB standard way to express proofs
and no means of checking the proofs. We hope that encouraging the capability in solvers will also
encourage a common proof format. The exhibition will count the number of benchmarks for which
a solver successfully generates a proof. Solvers submitted against this track must be accompanied
by a description of the format of the generated proofs.

The organizers are still reviewing which logic divisions will be supported for the unsat-core
and proof generating tracks; those divisions will be announced later. Input from teams considering
submitting unsat-core or proof generating solvers is welcome. In addition, because the compe-
tition has had to revert to the SMT-Exec, the organizers may simply make the proof genreation
demonstration informational or omit it.

4 Benchmarks and Problem Divisions
The competition divisions for SMT-COMP 2012 are planned to be the following SMT-LIB logics.
These logics are specified in SMT-LIB format on the SMT-LIB web page. However, the organizers

6The timeout may be adjusted once we have experience with the abilities and resources of the StarExec service.

8



reserve the right to add (remove) divisions if (not) enough benchmarks and solvers exist for a
particular division.

Note that this year we are reducing the number of competitive benchmark divisions. Our
reasons are to concentrate the competition and to focus development and attention on benchmarks
that are more challenging and relevant to applications.

In addition, the organizers reserve the right to include in the benchmark population benchmarks
from subsumed logics. For example, QF UFLIA may include some samples from QF LIA, and
QF UFLRA may include some from QF LRA. We will not use benchmarks from QF UF in other
divisions.

• QF BV: fixed-width bitvectors. This logic is important to “bit-blasting” model checking of
software.

• QF AUFBV: arrays, fixed-width bitvectors and uninterpreted functions. This logic is also
key to software model-checking, but adds arrays (which can be used for memory models)
and uninterpreted functions.

• QF UFLIA: uninterpreted functions and linear integer arithmetic. This division evaluates
reasoning about integers.

• QF UFLRA: uninterpreted functions and linear real arithmetic. This division evaluates rea-
soning about real numbers.

• QF IDL: quantifier-free formulas to be tested for satisfiability modulo a background theory
of integer arithmetic. The syntax of atomic formulas is restricted to difference logic, i.e. x -
y op c, where op is either equality or inequality and c is an integer constant. This division is
included because it was highly popular in 2011.

• AUFLIA+p: (quantified) arrays, uninterpreted functions and linear integer arithmetic, pat-
terns included. This and the subsequent divisions evaluate solvers’ abilities to handle quan-
tified formula.

• AUFLIA−p: (quantified) arrays, uninterpreted functions and linear integer arithmetic, pat-
terns not included.

• AUFNIRA: (quantified) arrays, uninterpreted functions and mixed nonlinear integer and real
arithmetic

4.1 Main and parallel tracks

Benchmark sources. Benchmark formulas for these divisions will be drawn from the SMT-LIB
library. Any benchmarks added to SMT-LIB by the April 15th release (see the timeline in Sec-
tion 6) will be considered eligible. SMT-COMP attempts to give preference to benchmarks that
are “real-world,” in the sense of coming from or having some intended application outside SMT.

Benchmark availability. Benchmarks will be made available by April 15, 2012. No additional
benchmarks will be added after this date, but benchmarks may be modified or removed to fix

9



possible bugs or other issues, or to adjust their difficulty score (see below). The final release that
will be used for the competition will be posted on June 1. The set of selected benchmarks will be
published when the competition begins.

Benchmark demographics. In SMT-LIB, benchmarks are organized according to families. A
benchmark family contains problems that are similar in some significant way. Typically they come
from the same source or application, or are all output by the same tool. Each top-level subdirectory
within a division represents a distinct family.

Each benchmark in SMT-LIB also has a category. There are four possible categories:

• check. These benchmarks are hand-crafted to test whether solvers support specific features
of each division. In particular, there are checks for integer completeness (i.e. benchmarks
that are satisfiable under the reals but not under the integers) and big number support (i.e.
benchmarks that are likely to fail if integers cannot be represented beyond some maximum
value, such as 231 − 1).

Using the same random seed as for benchmark selection and scrambling, 5 “check” bench-
marks will be randomly generated using Robert Brummayer’s SMT fuzzing tool [6]. The
(exact version of this) tool will be publicly available from the SMT-COMP 2012 web site
before the competition. Since these benchmarks are generated after the random seed is fixed,
they cannot be known in advance to any competitors, including the organizers. The ratio-
nale for including these benchmarks is to try to take a step towards stronger certification
that solvers are correct. In future years, we envision SMT-COMP requiring that solvers pass
some kind of pre-qualifying round based on SMT fuzzing. The inclusion of these fuzzing
benchmarks that are not known in advance is intended to encourage (without requiring)
solver implementors to test their solvers using fuzzing or similar bug-discovery techniques.

• industrial. These benchmarks come from some real application and are produced by tools
such as bounded model checkers, static analyzers, extended static checkers, etc.

• random. These benchmarks are randomly generated.

• crafted. This category is for all other benchmarks. Usually, benchmarks in this category are
designed to be particularly difficult or to test a specific feature of the logic.

Benchmark selection. Before the selection process, each benchmark will be assigned a difficulty:
a number between 0.0 and 5.0 inclusive, calculated as in 2011. The difficulty for a particular
benchmark will be assigned by running SMT solvers from previous competitions that finished in
good standing and using the formula:

difficulty =
5 · ln(1 + A2)

ln(1 + 302)

where A is the average time for the solvers to correctly solve the instance (in minutes). This
computation of difficulties replaces a simpler formulation in earlier SMT-COMPs that didn’t take
into account the time solvers take. This calculation of difficulty recognizes that problems requiring
more time by many solvers are more difficult problems. The logarithm is used to mark a larger

10



change in difficulty (given a corresponding increase in solver average time) at smaller time scales
than at higher ones (if A = 1, difficulty is 0.5; at A = 1.7, difficulty is 1.0; but a difficulty of 2.0
requires that A = 4); the square is used to flatten out this curve sightly at the low end.

When 5 or more solvers are used for the calculation, the maximum and the minimum times are
dropped from the calculation of the average. Solvers giving an incorrect answer are not counted
in the average; solvers crashing, timing out, or giving an unknown result are considered as taking
30 minutes (which, with the above formula, pulls the difficulty toward 5.0). If there are available
solvers, but no average is defined under these rules, the difficulty shall be 5.0. For new divisions,
where there are no available solvers to compute the difficulty, the difficulty will be computed using
whatever means are available to the organizers for that purpose.

The following scheme will be used to choose competition benchmarks within each division.
Unknown-status benchmarks from SMT-LIB are considered ineligible for competition and are not
used. The selection is implemented by our benchmark selection tool, source for which will be
available at www.smtcomp.org.

1. Check benchmarks included. All benchmarks in category check are included.

2. Retire very easy benchmarks. The most difficult 300 non-check non-unknown benchmarks
in each division are always included, together with all benchmarks on which at least one
2011 solver required more than 5 seconds. This is intended to have the effect of retiring
“very easy” benchmarks that were solved by every 2011 solver in less than 5 seconds, unless
doing so reduces the pool of benchmarks for the division to less than 300.

3. Retire inappropriate benchmarks. The competition organizers will remove from the eli-
gibility pool certain SMT-LIB benchmarks that are inappropriate or uninteresting for com-
petition, or cut the size of certain benchmark families to avoid their over-representation.

4. Division selection pools created. For non-check benchmarks, selection pools are created.
For benchmark families with ≤ 200 eligible, non-check benchmarks, all are added to this
pool; otherwise, 200 such benchmarks are added to the pool with the following distribution:

• 20 with solution sat and difficulty on [0, 1]

• 20 with solution sat and difficulty on (1, 2]

• 20 with solution sat and difficulty on (2, 3]

• 20 with solution sat and difficulty on (3, 4]

• 20 with solution sat and difficulty on (4, 5]

• 20 with solution unsat and difficulty on [0, 1]

• 20 with solution unsat and difficulty on (1, 2]

• 20 with solution unsat and difficulty on (2, 3]

• 20 with solution unsat and difficulty on (3, 4]

• 20 with solution unsat and difficulty on (4, 5]

11



If 20 are not available in one of these subdivisions, all that are available are added, and
remaining slots are reallocated to the others. This process is iterated so that it is guaranteed
that 200 benchmarks from the benchmark family are in the selection pool, in equal numbers
from each subdivision, so far as possible. (In cases where, e.g., there are only two available
slots and they can be allocated to one of three subdivisions, they are allocated randomly but
are guaranteed to be allocated to distinct subdivisions.)

5. Category slot allocation. Next, 200 slots are allocated for the division as follows:7

• 170 from category industrial

• 20 from category crafted

• 10 from category random

If there are fewer than 20 (respectively, 10) crafted or random benchmarks in the division
pool, more industrial slots are allocated to make 200 total for the division. If there are too
few industrial benchmarks in the division pool, more crafted slots are allocated to make 200
total for the division. (In no division are there not enough of both industrial and crafted
benchmarks.)

6. Category subdivision slot allocation. For each category, given that it has n slots allocated
to it, the slot allocation is further subdivided as follows:

•
⌊

n
10

⌋
slots for solution sat with difficulty on [0, 1]

•
⌊

n
10

⌋
slots for solution sat with difficulty on (1, 2]

•
⌊

n
10

⌋
slots for solution sat with difficulty on (2, 3]

•
⌊

n
10

⌋
slots for solution sat with difficulty on (3, 4]

•
⌊

n
10

⌋
slots for solution sat with difficulty on (4, 5]

•
⌊

n
10

⌋
slots for solution unsat with difficulty on [0, 1]

•
⌊

n
10

⌋
slots for solution unsat with difficulty on (1, 2]

•
⌊

n
10

⌋
slots for solution unsat with difficulty on (2, 3]

•
⌊

n
10

⌋
slots for solution unsat with difficulty on (3, 4]

•
⌊

n
10

⌋
slots for solution unsat with difficulty on (4, 5]

Remaining slots are allocated randomly to distinct subdivisions. If there aren’t enough
benchmarks in the pool meeting one or more of the above subdivision requirements for
the category, the subdivision allocation is reduced to the number available in the pool that
meet the requirements. To make up the full category allotment, remaining slots are allocated

7The number “200” is a guideline, and is expected to be used. However, the SMT-COMP organizers reserve the
right to reduce this to an appropriate value to ensure a timely end to the competition, and may do so on a per-division
basis. The category allotments, etc., will remain the same proportion of the total.

12



equally to subdivisions with enough benchmarks in the pool meeting their requirements.
This process ensures that all slots can be filled with benchmarks from the pool.

7. Benchmark selection. Benchmarks from the pool are assigned randomly to slots.

In the end, up to 200 non-check benchmarks per division are included in the competition, together
with all the check benchmarks. Some divisions may have fewer than 200 non-check benchmarks,
in which case all of them are included using this selection scheme.

Once the StarExec service is evaluated, and if the organizers decide that the service has suffi-
cient resources, the target number of benchmarks for a division may be increased above 200, with
all subpopulations being enlarged proportionately, insofar as there are sufficient benchmarks. The
target number of benchmarks will not be raised if that requires reducing the timeout limits below
the values used in 2011.

The main purpose of the algorithm above is to have a balanced and complete set of benchmarks.
The one built-in bias is towards industrial rather than crafted or random benchmarks. This reflects
a desire by the organizers and agreed upon by the SMT community to emphasize problems that
come from real applications.

Pseudo-random numbers will be generated using the standard C library function random(),
seeded (using srandom()) with the sum, modulo 230, of the numbers provided in the system
descriptions (see Section 2 above) by all SMT-COMP entrants other than the organizers. Addi-
tionally, the integer part of the opening value of the New York Stock Exchange Composite Index
on a publicized day will be added to the other seeding values. This helps provide transparency, by
guaranteeing that the organizers cannot manipulate the seed in favor of or against any particular
submitted solver. Benchmarks will also be slightly scrambled before the competition, using a sim-
ple benchmark scrambler seeded with the same seed as the benchmark selector. Both the scrambler
and benchmark selector will be publicly available before the competition. Naturally, solvers must
not rely on previously determined identifying syntactic characteristics of competition benchmarks
in testing satisfiability (violation of this is considered cheating).

4.2 Application track

Benchmark sources. Benchmarks for the application track will be collected by the SMT-COMP
organizers. Any benchmark available to the organizers by April 15th (see the timeline in Section 6)
will be considered eligible.

Benchmark availability. A first release of the application track benchmarks will be made available
March 15, 2012. More benchmarks can be collected, until April 15. No additional benchmarks
will be added after this date, but benchmarks can be modified or removed to fix possible bugs or
other issues. The final release that will be used for the competition will be posted on June 1.

Benchmark demographics and selection. All the available benchmarks will be used for the
competition. As was the case in 2011, no difficulty will be assigned to the benchmarks for the
application track. Benchmarks will be slightly scrambled before the competition, using the same
scrambler and random seed as the main track. The selection algorithm for the application track will
be chosen after the April 15th deadline, when the exact demographic of the benchmarks (collected
with a usual “call for benchmarks”) will be available.

13



4.3 Benchmarks for the unsat-core and proof-generation tracks
These benchmarks will be selected from the pool of available and newly submitted benchmarks,
adjusted to add formula naming for the unsat-core track. The organizers are still discussing which
logic divisions to use.

5 Judging and Scoring

Main and application tracks The score for each benchmark is a triple 〈e, n,m〉, with e a non-
negative number of erroneous results, n ∈ [0, N ] an integral number of points scored for the
benchmark, where N is the number of check-sat commands in the benchmark, and m ∈ [0, T ] is
the (real-valued) time in seconds, where T is the timeout. Recall that main track benchmarks will
have just one check-sat command; application track benchmarks may have multiple check-sat
commands. The score for the benchmark is initialized with 〈0, 0, 0〉 and then computed as follows.

• A correctly-reported sat or unsat answer after s seconds (counting from the beginning of
this particular check-sat) contributes 〈0, 1, s〉 to the running score.

• An answer of unknown, an unexpected answer, a crash, or a memory-out during execution
of the query, or a benchmark timeout, aborts the execution of the benchmark and assigns the
current value of the running score to the benchmark. (Recall that there is one timeout for the
entire benchmark; there are no individual timeouts for queries.)

• An incorrect answer to a check-sat command has the effect of terminating the evaluation of
that individual benchmark, and the returned score for the benchmark will be 〈1, 0, 0〉.

For example, if a benchmark has 5 check-sat commands, and a timeout of 100 seconds, and a
solver solves the first four in 10 seconds each, then times out on the fifth, then the solver’s score is
〈0, 4, 40〉. If another solver solves each of the first four in 10 seconds each, and the fifth in another
40 seconds, its score is 〈0, 5, 80〉. If a third solver solves the first four queries in 2 seconds each,
but incorrectly answers the fifth, its score is 〈1, 0, 0〉.

As queries are only presented in order, this scoring system may mean that relatively “easier”
queries are hidden behind more difficult ones located at the middle of the query sequence.

Benchmarks’ scores are summed componentwise to form a solver’s total score for the compe-
tition. Total scores are compared lexicographically—a score 〈e, n,m〉 is better than 〈e′, n′,m′〉 iff
e < e′ or (e = e′ and n > n′) or (e = e′ and n = n′ and m < m′). That is, fewer errors takes
precedence over more correct solutions, which takes precedence over less time taken.

Unsat-core track
The unsat-core track will be scored as follows. The score for each benchmark is a triple

〈e, n,m〉, with e a non-negative number of erroneous results, n the reduction in number of for-
mula in the unsat core for the benchmark, and m ∈ [0, T ] is the (real-valued) time is seconds,
where T is the timeout. The score for the benchmark is initialized with 〈0, 0, 0〉 and then computed
as follows.

14



• A correctly-reported unsat-core answer after s seconds (counting from the beginning of this
particular check-sat) contributes 〈0, n, s〉 to the running score, where n is the reduction in
number of formula in the unsat core (number of named formula in the benchmark minus the
number reported as the unsat core).

• An answer of unknown, an unexpected answer, a crash, or a memory-out during execution
of the query, or a benchmark timeout, aborts the execution of the benchmark and assigns a
score of 〈0, 0, T 〉 for the benchmark, where T is the timeout value.

• The score for an incorrect answer to a check-sat command will be 〈1, 0, T 〉, where T is the
timeout value.

Scores are summed and ordered as for the main track.

Number of competitors Winners in each competition Problem Division for which there are at
least three entrants from distinct research groups competing will be taken to be those with the
highest score and no erroneous results. In addition to recognizing the overall winner in each
division, the top solver that provides its source code will also be recognized in each division.
For Problem Divisions with fewer than three entrants, the results will be reported but no winner
officially declared.

6 Timeline
March 15 First version of the benchmark library for the application track posted for comment.

First version of the benchmark scrambler, benchmark selector and trace exector made avail-
able.

April 15 Final version of the benchmark scrambler, benchmark selector and trace exector made
available.

April 15 No new benchmarks can be added after this date, but problems with existing benchmarks
may be fixed.

June 1 Benchmark libraries are frozen.

June 15 (7pm EDT) Solvers due via SMTExec (for all tracks), including system descriptions and
magic numbers for benchmark scrambling.

June 18 (7pm EDT) Final versions due, fixing any last-minute bugs (this marks the end of the
grace period for submissions).

June 20 Opening value of NYSE Composite Index used to complete random seed.

June 25–29 Anticipated dates for SMT-COMP 2012.

15



7 Mailing List
Interested parties should subscribe to the SMT-COMP mailing list, a link to which is found at
www.smtcomp.org. Important late-breaking news and any necessary clarifications and edits to
these rules will be announced there, and it is the primary way that such announcements will be
communicated.

8 Disclaimer
• David Cok is the chief organizer of SMT-COMP 2012. He is responsible for all policy and

procedure decisions, such as these rules. He is not associated with any group creating or
submitting solvers. He has used solvers in industrial settings and is keenly interested to
know which are the best.

• Alberto Griggio and Roberto Bruttomesso are co-organizers. They were also co-organizers
in 2011. They are responsible for bringing recommendations from the previous year’s ex-
perience. They will also be validating the competition setup, checking benchmarks, and
operating the competition. They have been associated with solver groups that have submit-
ted solvers to the competition, and may again in 2012 (in 2011, MathSat and OpenSMT,
respectively).

References
[1] C. Barrett, L. de Moura, and A. Stump. Design and Results of the 1st Satisfiability Modulo

Theories Competition (SMT-COMP 2005). Journal of Automated Reasoning, 35(4):373–390,
2005.

[2] C. Barrett, L. de Moura, and A. Stump. Design and Results of the 2nd Annual Satisfiabil-
ity Modulo Theories competition (SMT-COMP 2006). Formal Methods in System Design,
31(3):221–239, 2007.

[3] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and results of the
4th annual satisfiability modulo theories competition (SMT-COMP 2008). In preparation.

[4] Clark Barrett, Morgan Deters, Albert Oliveras, and Aaron Stump. Design and results of the 3rd
annual satisfiability modulo theories competition (SMT-COMP 2007). International Journal
on Artificial Intelligence Tools, 17(4):569–606, 2008.

[5] D. Le Berre and L. Simon. The essentials of the SAT 2003 competition. In Sixth International
Conference on Theory and Applications of Satisfiability Testing, volume 2919 of LNCS, pages
452–467. Springer-Verlag, 2003.

[6] R. Brummayer and A. Biere. Fuzzing and Delta-Debugging SMT Solvers. In B. Dutertre and
O. Strichman, editors, International Workshop on Satisfiability Modulo Theories (SMT), 2009.

16



[7] F.J. Pelletier, G. Sutcliffe, and C.B. Suttner. The Development of CASC. AI Communications,
15(2-3):79–90, 2002.

[8] Silvio Ranise and Cesare Tinelli. The SMT-LIB web site, 2004.
http://combination.cs.uiowa.edu/smtlib.

A Sample benchmark scripts for the main track

QF UF

(set-logic QF_UF)
(set-info :status sat)
(declare-sort U 0)
(declare-fun f (U) U)
(declare-fun g (U) U)
(declare-fun A () Bool)
(declare-fun x () U)
(declare-fun y () U)
(assert
(let ((fx (f x))

(cls1 (or A (= x y))))
(and cls1 (distinct fx (g y)))))

(check-sat)
(exit)

QF LRA

(set-logic QF_LRA)
(declare-fun x () Real)
(declare-fun y () Real)
(declare-fun A () Bool)
(assert

(let ((i1 (ite A (<= (+ (* 2.0 x) (* (/ 1 3) y)) (- 4))
(= (* y 1.5) (- 2 x)))))

(and
i1
(or (> x y) (= A (< (* 3 x) (+ (- 1) (* (/ 1 5) (+ x y)))))))))

(check-sat)
(exit)

QF LIA

(set-logic QF_LIA)
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun A () Bool)
(assert

(let ((i1 (ite A (<= (+ (* 2 x) (* (- 1) y)) (- 4))
(= (* y 5) (- 2 x)))))

17



(and
i1
(or (> x y) (= A (< (* 3 x) (+ (- 1) (* 1 (+ x y)))))))))

(check-sat)
(exit)

QF BV

(set-logic QF_BV)
(declare-fun x () (_ BitVec 32))
(declare-fun y () (_ BitVec 16))
(declare-fun z () (_ BitVec 20))
(assert

(let ((c1 (= x ((_ sign_extend 12) z))))
(let ((c2 (= y ((_ extract 18 3) x))))
(let ((c3

(bvslt (concat z (_ bv5 12))
(bvand (bvor (bvxor (bvnot x) ((_ zero_extend 28) #b1111))

(concat #xAF02 y))
(concat (bvmul ((_ extract 31 16) x) y)

(bvashr (_ bv42 16) #x0001))))))
(and c1 (xor c2 c3))))))

(check-sat)
(exit)

QF AUFLIA

(set-logic QF_AUFLIA)
(declare-fun A () (Array Int Int))
(declare-fun x () Int)
(declare-fun y () Int)
(declare-fun P () Bool)
(declare-sort U 0)
(declare-fun f (U) (Array Int Int))
(declare-fun c () U)
(assert

(let ((fc (f c)))
(and

(=> (= A (store fc x 5)) (> (+ (select fc y) (* 4 x)) 0))
(= P (< (select A (+ 3 y)) (* (- 2) x))))))

(check-sat)
(exit)

QF ABV

(set-logic QF_ABV)
(declare-fun x () (_ BitVec 32))
(declare-fun y () (_ BitVec 16))
(declare-fun z () (_ BitVec 20))
(declare-fun A () (Array (_ BitVec 16) (_ BitVec 32)))
(assert

18



(let ((c1 (= ((_ sign_extend 12) z) (select A y)))
(A2 (store A ((_ extract 15 0) x) x)))

(let ((c2 (= A A2)))
(let ((c3

(bvslt (concat z (_ bv5 12))
(bvand (bvor (bvxor (bvnot x)

(select A2 ((_ zero_extend 12) #b1111)))
(concat #xAF02 y))

(concat ((_ extract 15 0)
(bvmul x (select (store A y x) #x35FB)))

(bvashr (_ bv42 16) #x0001))))))
(and c1 (xor c2 c3))))))

(check-sat)
(exit)

B Sample benchmark scripts for the application track
(set-option :print-success true)
(set-logic QF_LRA)
(declare-fun c0 () Bool)
(declare-fun E0 () Bool)
(declare-fun f0 () Bool)
(declare-fun f1 () Bool)
(push 1)
(assert

(let ((.def_10 (not f0)))
(let ((.def_9 (not c0)))
(let ((.def_11 (or .def_9 .def_10)))
(let ((.def_7 (not f1)))
(let ((.def_8 (or c0 .def_7)))
(let ((.def_12 (and .def_8 .def_11)))

.def_12
)))))))
(check-sat)
(pop 1)
(declare-fun f2 () Bool)
(declare-fun f3 () Bool)
(declare-fun f4 () Bool)
(declare-fun c1 () Bool)
(declare-fun E1 () Bool)
(assert
(let ((.def_23 (not f2)))
(let ((.def_20 (= c0 c1)))
(let ((.def_22 (or E0 .def_20)))
(let ((.def_24 (or .def_22 .def_23)))
(let ((.def_18 (not f4)))
(let ((.def_19 (or c1 .def_18)))
(let ((.def_25 (and .def_19 .def_24)))

.def_25
))))))))
(push 1)
(check-sat)

19



(assert (and f1 (not f1)))
(check-sat)
(pop 1)
(exit)

20


