
CVC4

Kshitij Bansal1, Clark Barrett1, François Bobot2, Christopher L. Conway1,
Morgan Deters1, Liana Hadarean1, Dejan Jovanović1, Tim King1,

Andrew Reynolds2, and Cesare Tinelli2

1New York University 2University of Iowa

Abstract. CVC4 is the latest version of the Cooperating Validity Check-
er. A joint project of NYU and U Iowa, CVC4 aims to support the useful
feature set of CVC3 and SMT-LIBv2 while optimizing the design of the
core system architecture and decision procedures to take advantage of
recent engineering and algorithmic advances. CVC4 represents a com-
pletely new code base; it is a from-scratch rewrite of CVC3, and many
subsystems have been completely redesigned. We describe the system
architecture, subsystems of note, and discuss some applications and con-
tinuing work.

1 Introduction

The Cooperating Validity Checker series has a long history, starting with the
Stanford Validity Checker (SVC) [3], and continuing with the Cooperating Va-
lidity Checker (CVC) [25], CVC Lite [1], and CVC3 [5].

CVC4 is the new version, the fifth generation of this validity checker line that
is now celebrating fifteen years of heritage. It represents a complete re-evaluation
of the core architecture to be both performant and to serve as a cutting-edge re-
search vehicle for the next several years. Rather than taking CVC3 and redesign-
ing problem parts, we’ve taken a clean-room approach, starting from scratch.
Before using any designs from CVC3, we have thoroughly scrutinized, vetted,
and updated them. Many parts of CVC4 bear only a superficial resemblance, if
any, to their correspondent in CVC3. However, CVC4 is fundamentally similar
to CVC3 and many other modern SMT solvers: it is a DPLL(T ) solver [18], with
a SAT solver at its core and a delegation path to different decision procedure
implementations, each in charge of solving formulas in some background theory.

2 Design of CVC4

CVC4 is organized around a central core of engines:

This work partially supported by the NSF (CCF–0644299, CCF–0914956, CNS–
1049495, and 0914877), AFOSR (FA9550–09–1–0596 and FA9550–09–1–0517),
SRC 2008–TJ–1850, and MIT Lincoln Laboratory. This system description draws
from and builds on the CAV 2011 CVC4 tool paper [2].



– The SMT Engine serves as the main outside interface point to the solver.
Known in previous versions of CVC as the ValidityChecker, the SMT Engine

has public functions to push and pop solving contexts, manipulate a set of
currently active assumptions, and check the validity of a formula, as well as
functions to request proofs and generate models. This engine is responsible
for setting up and maintaining all user-related state.

– The Prop Engine manages the propositional solver at the core of CVC4.
This, in principle, allows different SAT solvers to be plugged into CVC4. (At
present, only MiniSat is supported, due to the fact that a SAT solver must
be modified to dispatch properly to SMT routines.)

– The Decision Engine provides support for alternative decision heuristics.
CVC4 supports both an “internal” heuristic, which simply uses the SAT
solver’s internal decision heuristic, as well as custom heuristics which are
coded within the Decision Engine.

– The Theory Engine serves as an “owner” of all decision procedure imple-
mentations, giving a single point of interface between the rest of CVC4 and
decision procedure implementations. As is common in the research field,
these implementations are referred to as theories and all are derived from
the base class Theory and implement a common interface that the Theory

Engine uses.
– The Equality Engine is a reusable class that manages information about

equalities and disequalities. It has a number of nice features including high
performance, the ability to perform congruence closure on selected operators,
and a variety of call-back mechanisms for informing clients when certain
terms become equal or disequal.

CVC4 uses Theory objects similar to those suggested by modern DPLL(T ) lit-
erature [18] and used in other solvers. CVC4’s Theory class is responsible for
checking consistency of the current set of assertions, and propagating new facts
based on the current set of assertions.

CVC4 incorporates numerous managers in charge of managing subsystems:

– The Node Manager is one of the busiest parts of CVC4, in charge of the cre-
ation and deletion of all expressions (“nodes”) in the prover. Node objects
are immutable and unique; the creation of an already-extant Node results in
a reference to the original. Node data is reference-counted (the Node class
itself is just a reference-counted smart pointer to node data) and subject
to reclamation by the Node Manager when no longer referenced; for perfor-
mance reasons, this is done lazily.

– The Shared Term Manager is in charge of all shared terms in the system.
Shared terms are detected by the Theory Engine and registered with this
manager, and this manager broadcasts new equalities between shared terms.

– The Context Memory Manager is in charge of maintaining a coherent, back-
trackable data context for the prover. At its core, it is simply a region memory
manager, from which new memory regions can be requested (“pushed”) and
destroyed (“popped”) in LIFO order. These regions contain saved state for a
number of heap-allocated objects, and when a pop is requested, these heap



objects are “restored” from their backups in the region. This leads to a nice,
general mechanism to do backtracking without lots of ad hoc implementa-
tions in each theory; this is highly useful for rapid prototyping. However,
as a general mechanism, it must be used sparingly; as it is often more effi-
cient to perform specialized backtracking manually within a theory using a
lighter-weight method.

2.1 Preprocessing

CVC4 includes a sophisticated preprocessor with several passes:

– Nonclausal simplification looks at the structure of the formula to be checked
and identifies literals that must be true based on the Boolean structure.
These literals are then processed: when possible a true equation is solved for
a variable and this variable is replaced everywhere in the formula; otherwise,
if an equation has a constant value on one side, then constant propagation is
done, replacing the other side with the constant value wherever it appears.

– ITE simplification looks for opportunities to simplify the formula by analyz-
ing if-then-else terms. It uses a restricted form of the algorithm described
in [23] as well as the simplification algorithm described in [12].

– Unconstrained value simplification looks for unconstrained values: variables
which appear only once in the formula. Often, it is possible to replace the
immediate predecessor of an unconstrained value with a new unconstrained
value. The idea is described in [7, 9].

– Theory preprocessing applies theory-specific preprocessing rewrites that have
the potential to simplify the formula based on the literals identified in the
nonclausal simplification phase.

2.2 Theories

CVC4 incorporates newly-designed and implemented decision procedures for its
theories:

– The theory of uninterpreted functions is little more than a wrapper around
an instance of the Equality Engine. It does congruence closure and theory
propagation on literals from its theory.

– The theory of arithmetic handles both linear real and linear integer arith-
metic. It uses a highly-tuned simplex implementation based on [17] as well
as a variety of integer techniques adapted from [20].

– The theory of arrays is based on lazy lemma instantiation as described in [15,
22].

– The theory of bit-vectors uses a new approach which combines lazy bit-
blasting with in-processing using an algebraic solver. Currently, the alge-
braic solver is no more than an Equality Engine, but we hope to improve it
significantly going forward.

– The theory of datatypes implements a decision procedure for mutually re-
cursive inductive datatypes based on [4].



– A “theory” of quantifiers handles skolemization and instantiation. It is based
on current best-practices for quantifier instantiation [19, 13] and also incor-
porates some new features based on counter-example detection and finite
model finding. A related module allows quantified axioms to be used as
rewrite rules. For certain theories that can be specified using rewrite rules,
the performance is far superior than if they were simply specified as quanti-
fied axioms.

Theory combination relies on polite combination [21] and care functions [22].
Care functions are computed by the uninterpreted function theory and the array
theory.

2.3 Proofs

CVC4’s proof system is designed to support LFSC proofs [24], and is also de-
signed to have absolutely zero footprint in memory and time when proofs are
turned off at compile-time.

2.4 Library API

As CVC4 is meant to be used via a library API, there’s a clear division be-
tween the public, outward-facing interface, and the private, inward-facing one.
This is a distinction that wasn’t as clear in the previous version; installations of
CVC3 required the installation of all CVC3 header files, because public headers
depended on private ones to function properly. Not so in CVC4, where only a
subset of headers declaring public interfaces are installed on a user’s machine.
Inward-facing interfaces are not even exported by the library.

Further, we have decided “to take our own medicine.” Our own tools, includ-
ing CVC4’s parser and main command-line tool, link against the CVC4 library
in the same way that any end-user application would (and therefore does not
have access to internal, undocumented interfaces). This helps us ensure that
the library API is complete—since if it is not, the command-line CVC4 tool is
missing functionality, too, an omission we catch quickly.

2.5 Theory modularity

Theory objects are designed in CVC4 to be highly modular: they do not employ
global state, nor do they make any other assumptions that would inhibit their
functioning as a client to another decision procedure. In this way, one Theory

can instantiate and send subqueries to a completely subservient client Theory

without interfering with the main solver flow.

2.6 Support for concurrency

CVC4’s infrastructure has been designed to make the transition to multiproces-
sor and multicore hardware easy, and we currently have an experimental lemma-
sharing portfolio version of CVC4. We intend CVC4 to be a good vehicle for other



research ideas in this area as well. In part, the modularity of theories (above)
is geared toward this—the absence of global state and the immutability of ex-
pression objects clearly makes it easier to parallelize operations. Similarly, the
Theory API specifically includes the notion of interruptibility, so that an expen-
sive operation (e.g., theory propagation) can be interrupted if work in another
thread makes it irrelevant. Current work being performed at NYU and U Iowa
is investigating different ways to parallelize SMT; the CVC4 architecture pro-
vides a good experimental platform for this research, as it does not need to be
completely re-engineered to test different concurrent solving strategies.

3 Conclusion

SMT solvers are currently an area of considerable research interest. Barcel-
ogic [6], CVC3 [5], MathSat [10] OpenSMT [11], Yices [16], and Z3 [14] are
examples of modern, currently-maintained, popular SMT solvers. OpenSMT and
CVC3 are open-source, and CVC3, Yices, and Z3 are the only ones to support
all of the defined SMT-LIB logics, including quantifiers.

CVC4 aims to follow in CVC3’s footsteps as an open-source theorem prover
supporting this wide array of background theories. CVC3 supports all of the
background theories defined by the SMT-LIB initiative, and provides proofs and
counterexamples upon request; CVC4 aims for full compliance with the new
SMT-LIB version 2 command language and backward compatibility with the
CVC presentation language.

In this way, we hope CVC4 can largely be a drop-in replacement for CVC3,
with a cleaner and more consistent library API, a more modular, flexible core,
a far smaller memory footprint, and better performance characteristics.

CVC4’s superior performance (compared to CVC3) is apparent by comparing
their performance in SMT-COMP 2012 [8]. CVC4 outperformed CVC3 in every
category. CVC4 performs competitively with other solvers and was the winner
in the QF UFLRA division.

Our goal with CVC4 is to provide a high-performing, fully-featured SMT
solver. CVC4 now supports most of the features that CVC3 supported as well as
some new ones (the rewrite-rule system for example). We expect to continue to
improve the existing features while actively developing new ones. New features
under development include support for nonlinear arithmetic, a theory of strings,
and a theory for reasoning about floating point values.

References

1. Clark Barrett and Sergey Berezin. CVC Lite: A new implementation of the Cooper-
ating Validity Checker. In Rajeev Alur and Doron A. Peled, editors, Proceedings of
the 16th International Conference on Computer Aided Verification (CAV ’04), vol-
ume 3114 of Lecture Notes in Computer Science, pages 515–518. Springer-Verlag,
July 2004. Boston, Massachusetts.



2. Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan
Jovanović, Tim King, Andrew Reynolds, and Cesare Tinelli. CVC4. In Ganesh
Gopalakrishnan and Shaz Qadeer, editors, Proceedings of the 23rd International
Conference on Computer Aided Verification (CAV ’11), volume 6806 of Lecture
Notes in Computer Science, pages 171–177. Springer, July 2011. Snowbird, Utah.

3. Clark Barrett, David Dill, and Jeremy Levitt. Validity checking for combinations
of theories with equality. pages 187–201. Springer-Verlag, 1996.

4. Clark Barrett, Igor Shikanian, and Cesare Tinelli. An abstract decision procedure
for a theory of inductive data types. Journal on Satisfiability, Boolean Modeling
and Computation, 3:21–46, 2007.

5. Clark Barrett and Cesare Tinelli. CVC3. In Werner Damm and Holger Hermanns,
editors, Proceedings of the 19th International Conference on Computer Aided Ver-
ification (CAV ’07), volume 4590 of Lecture Notes in Computer Science, pages
298–302. Springer-Verlag, July 2007. Berlin, Germany.

6. Miquel Bofill, Robert Nieuwenhuis, Albert Oliveras, Enric Rodrguez-Carbonell,
and Albert Rubio. The Barcelogic SMT solver. In Aarti Gupta and Sharad Malik,
editors, Computer Aided Verification, volume 5123 of Lecture Notes in Computer
Science, pages 294–298. Springer Berlin / Heidelberg, 2008.

7. R. Brummayer. Efficient SMT Solving for Bit-Vectors and the Extensional Theory
of Arrays. PhD thesis, Johannes Kepler University, November 2009.

8. R. Bruttomesso, D. Cok, and A. Griggio. SMT-COMP 2012: the 2012 edition
of the satisfiability modulo theories competition. http://smtcomp.sourceforge.

net/2012/.
9. Roberto Bruttomesso. RTL Verification: From SAT to SMT(BV). PhD the-

sis, University of Trento, 2008. Available at http://www.inf.unisi.ch/postdoc/
bruttomesso.

10. Roberto Bruttomesso, Alessandro Cimatti, Anders Franzn, Alberto Griggio, and
Roberto Sebastiani. The MathSAT 4 SMT solver. In Aarti Gupta and Sharad Ma-
lik, editors, Computer Aided Verification, volume 5123 of Lecture Notes in Com-
puter Science, pages 299–303. Springer Berlin / Heidelberg, 2008.

11. Roberto Bruttomesso, Edgar Pek, Natasha Sharygina, and Aliaksei Tsitovich. The
OpenSMT solver. In Javier Esparza and Rupak Majumdar, editors, Tools and
Algorithms for the Construction and Analysis of Systems, volume 6015 of Lecture
Notes in Computer Science, pages 150–153. Springer Berlin / Heidelberg, 2010.

12. Jerry R. Burch. Techniques for verifying superscalar microprocessors. In Proceed-
ings of the 33rd annual Design Automation Conference, DAC ’96, pages 552–557,
New York, NY, USA, 1996. ACM.

13. Leonardo de Moura and Nikolaj Bjørner. Efficient E-Matching for SMT solvers
automated deduction CADE-21. In Frank Pfenning, editor, Automated Deduction
CADE-21, volume 4603 of Lecture Notes in Computer Science, chapter 13, pages
183–198. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2007.

14. Leonardo De Moura and Nikolaj Bjørner. Z3: an efficient SMT solver. In
Proceedings of the Theory and practice of software, 14th international confer-
ence on Tools and algorithms for the construction and analysis of systems,
TACAS’08/ETAPS’08, pages 337–340, Berlin, Heidelberg, 2008. Springer-Verlag.

15. Leonardo de Moura and Nikolaj Bjørner. Generalized, efficient array decision
procedures. In Formal Methods in Computer-Aided Design, 2009, pages 45–52.
IEEE, November 2009.

16. Bruno Dutertre and Leonardo de Moura. The YICES SMT solver. http://yices.
csl.sri.com/tool-paper.pdf.



17. Bruno Dutertre and Leonardo de Moura. A fast linear-arithmetic solver for
DPLL(T). In Proceedings of the 18th Computer-Aided Verification conference,
volume 4144 of LNCS, pages 81–94. Springer-Verlag, 2006.

18. Harald Ganzinger, George Hagen, Robert Nieuwenhuis, Albert Oliveras, and Ce-
sare Tinelli. DPLL(T): fast decision procedures. pages 175–188. Springer, 2004.

19. Yeting Ge, Clark Barrett, and Cesare Tinelli. Solving quantified verification con-
ditions using satisfiability modulo theories. Annals of Mathematics and Artificial
Intelligence, 55(1-2):101–122, February 2009.

20. A. Griggio. An Effective SMT Engine for Formal Verification. PhD thesis, DISI,
University of Trento, November 2009.

21. Dejan Jovanović and Clark Barrett. Polite theories revisited. In Christian G.
Fermüller and Andrei Voronkov, editors, Proceedings of the 17th International Con-
ference on Logic for Programming, Artificial Intelligence, and Reasoning (LPAR
’10), volume 6397 of Lecture Notes in Computer Science, pages 402–416. Springer,
October 2010. Yogyakarta, Indonesia.

22. Dejan Jovanović and Clark Barrett. Being careful about theory combination. For-
mal Methods in System Design, pages 1–24, 2012.

23. Hyondeuk Kim, Fabio Somenzi, and HoonSang Jin. Efficient Term-ITE conversion
for satisfiability modulo theories theory and applications of satisfiability testing -
SAT 2009. volume 5584 of Lecture Notes in Computer Science, chapter 20, pages
195–208. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2009.

24. Duckki Oe, Andrew Reynolds, and Aaron Stump. Fast and flexible proof checking
for SMT. In Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories, SMT ’09, pages 6–13, New York, NY, USA, 2009. ACM.

25. Aaron Stump, Clark W. Barrett, and David L. Dill. CVC: A cooperating validity
checker. In Ed Brinksma and Kim Guldstrand Larsen, editors, Proceedings of the
14th International Conference on Computer Aided Verification (CAV ’02), volume
2404 of Lecture Notes in Computer Science, pages 500–504. Springer-Verlag, July
2002. Copenhagen, Denmark.


